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Dynamics of temporal learning rules

Patrick D. Roberts
Neurological Sciences Institute, OHSU, 1120 Northwest 20th Avenue Portland, Oregon 97209

~Received 13 October 1999; revised manuscript received 13 March 2000!

The changes of synaptic strength are analyzed on two time scales: the fast local field dynamics, and the slow
synaptic modification dynamics. The fast dynamics are determined by the synaptic strengths and background
noise in the system. The slow dynamics are determined by the functional form of atemporal learning rule.
Temporal learning rules are defined to be functions yielding state dependent changes in synaptic strengths
depending on the timing of pre- and postsynaptic states in the network. The evolution of local field dynamics
that result from various learning rules are analyzed for a stochastic, discrete time neural model with no relative
refractory period that receives a series of delayed adaptive inputs. A fixed point is found in the learning
dynamics, and conditions for two types of instabilities are analyzed. Four universality classes of dynamics are
found that are independent of the details of the temporal learning rules. Examples are given of biological
systems in which these temporal learning rules have been identified, and their functional consequences are
discussed.

PACS number~s!: 87.18.Sn, 87.19.La, 75.10.Nr
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I. INTRODUCTION

In this paper we analyze the dynamics of learning in ad
tive neural networks with generalized interactions betwe
spin states~neurons!. The interactions~synapses! considered
here are dependent on the recent history of states, in con
to the instantaneous state dependency of Hopfield netw
@1,2#. In addition, the synapses are modified~learn! by a
function of the time delay between the active states of
pre- and postsynaptic neurons. This generalizes Hopfie
implementation@1# of the Hebb rule@3# where the change o
synaptic strength is a function of the averaged simultane
activity of the pre- and postsynaptic neurons. These ge
alizations are shown to lead to static, oscillatory, and trav
ling wave solutions. Bifurcation parameters are found to
expressed in terms of the synaptic response functions
learning functions.

This work is part of an effort to generalize our unde
standing of learning dynamics to conditions that are imp
tant in biological neural networks@4–7#. The analysis and
simulations presented here allow us to classify the type
dynamics that may arise when the interactions are not s
chronous, but depend on recent states of the system.
stored memories of the system may be stabilized by inc
ing a temporal component to the learning rule that contr
the changes of synapses. These types of learning rules
called temporal learning rulesand have recently been cha
acterized in biological systems@8–10#.

The dynamics of adaptive neural networks can be se
rated into two time scales@11–13#: the fast activity of the
neural states~response time!, and the slow change in th
strength of synapses between neurons~learning time!. In the
study of disordered systems, this separation of time scale
called partial annealing@12#. Here we follow the approach
developed in@6# and apply separation of time scales to t
analysis of learning in spiking neural networks.

The evolution of synaptic strength determines the
namical classes. Under certain conditions a fixed point in
spike output probability function exists and the synaptic c
PRE 621063-651X/2000/62~3!/4077~6!/$15.00
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figuration is uniquely determined@14#. A Hopf bifurcation
destabilizes the network’s approach to this fixed point. T
instability is due to the history dependent synapses, and c
ditions for stable learning will be derived in the following
Furthermore, traveling wave solutions are found for t
equations describing synaptic modifications, and conditi
for the appearance of these travelling wave solutions
identified. The learning dynamics show a universality tha
independent of the exact form of the synaptic response fu
tion or temporal learning rule.

Although temporal learning rules explicitly describe th
deterministic effect on the system by each pairing of sta
the averagechanges in system states over time gener
characteristic temporal patterns for each rule. Different te
poral learning rules are then associated with identifiable
namics. Four classes of dynamics will be treated in the
lowing: stable approach to an equilibrium level of activit
oscillatory instabilities, and two traveling wave solution
These dynamics fully describe the possible activity patte
that are generated by the connectivity explored in this stu
and may be generalized to more complex systems.

The classes of dynamics follow from the formalization
phenomena found in biological neural tissue. However,
results uncover some interesting dynamics that are inhe
in the fatigue of materials far from equilibrium whenev
interactions change in a state-dependent manner. The a
tive dynamics are analyzed by using the simplest poss
model that possesses the interesting dynamics; a set of
porally correlated states that interact with a stochastic ‘‘n
ron’’ that is simultaneously being influenced by a tim
dependent perturbation. As the perturbation is repeated,
strengths of the synapses change by rules that depend o
state of the whole system.

In the next section we present the network model a
introduce our analytic approach. General temporal learn
rules are formalized and the average changes of the syna
under temporal learning rule are established. The follow
section explores the state dynamics of the model neu
given a ~nonbiological! rectangular response function. Th
4077 ©2000 The American Physical Society
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4078 PRE 62PATRICK D. ROBERTS
third section investigates the dynamics that arise from a m
complicated, biologically realistic synaptic response fun
tion, and the theoretical significance of these results are
sented in the final section.

II. THEORETICAL FRAMEWORK

To analyze the dynamics of temporal learning rules,
consider a two-state, stochastic neuron with~spin! statess
50, 1. A series ofI input sites are chronologically activate
from 0→1 for one time step and returned to the resting sta
This architecture is equivalent to that found in Fig. 1
Kempteret al. @6#. However, in the present case each inp
site is activated at a different delay following a referen
time, similar to the auditory scenario considered in@5#. The
reference time represents the repeated presentation of a
poral pattern. Letx50 be the reference time, and all positiv
values ofxi5 iDx, i 51,2, . . . ,I represent the beginning o
each response to the activation of the input series represe
by the spike response functione(x) ~see Fig. 1!. The spike
response function is defined such that there is an incre
probability of a postsynaptic spike following each input. Th
architecture is chosen because it is the simplest scenario
exhibits the dynamics characteristic of temporal learn
rules. The model shows the dynamics for any learning s
tem where adaptable inputs are repeatedly correlated w
nonadaptive temporal pattern. In addition, this architectur
relevant to certain biological neural systems@5,15,16#, where
the response function represents the postsynaptic pote
due to synaptic input.

A. Fast neural dynamics

To investigate how the synaptic strengths of the in
series change due to specific temporal learning rules,
wish to correlate the delayed series with a nonadaptive t
poral pattern,j(x). Each repetition of the paired input wi
be parametrized with the variablet that represents the evo
lution of the system under the influence of the learning ru
Thus, the neuron will be dependent on the coordinates (x,t),

FIG. 1. Response functions.The functional form of the respons
functions are shown here. The square response function~solid! is
used in the analysis of Sec. III,Es parametrizes the width,Xs de-
notes the beginning of the nonzero segment, and the normaliz
constrains the height to 1/Es . The alpha-function response functio
~broken trace! is studied in Sec. IV, and has a maximum value
Ea1Xs . The percentage of the maximum average local field va

%h̄max, is the value used in the simulations withDx51 ms and the
weights range from 0 to 1.
re
-
e-

e

e.
f
t

m-

ted

es

hat
g
s-

a
is

tial

t
e
-

s.

where thex-coordinate parametrizes fast neuronal~spin! dy-
namics, and thet-coordinate parametrizes slow learning~in-
teraction! dynamics. We emphasize thatx is not a spatial
component, but the notation is used to suggest techniq
from field theory.

We will compute the ensemble average change in syn
tic strength following the pairing of inputs to the neuron.
each interval@xi ,xi 11#, there is a finite probability of aspike
(s51) that is functionally related to the average local fie
h̄(xi ,t). Let n(xi) be the number of spikes betweenxi and
xi 11. If b parametrizes the noise in the model neuron,
partition function given by

Z~u!5)
i 51

I S (
n(xi )

exp@2bn~xi !~ h̄~xi ,t !2u!# D , ~2.1!

where u is introduced as a spike threshold to regulate
average number of spikes,^N(t)&, during each cycle.

If we choose the time steps of thex component to be as
small as the absolute refractory period of the neuronr
5Dx, then only one spike can occupy each time-st
n(xi)50,1. Thus

Z~u!5)
i 51

I

†11exp@2b„h̄~xi ,t !2u…#‡. ~2.2!

Using this partition function, we may compute the avera
number of spikes during each time step~see, for example,
@17#!:

^n~xi ,t !&52
1

b

]

]hi
ln Z~u!5

1

11exp@2b„h̄~xi ,t !2u…#
,

~2.3!

where we have used the notation,hi5h̄(xi ,t).
From the expression for the spike probability function, w

see that given the noise parameter,b, and the spike thresh
old, u, one may calculate the spike probability from the a
erage local field,h̄(xi ,t). Each input of the delayed serie
contributes through the response function,e(xi), that repre-
sents the time course of the interaction. In the following,
response function will be normalized to unity,( ie(xi)51.
When multiplied by a weight,w(xi ,t), the product yields the
contribution of a synapse that initiates its input atxi . The
total contribution from the series of adaptive inputs is t
sum

he~xj ,t !5(
i 51

N

w~xi ,t !e~xj2xi !. ~2.4!

This quantity is added to the nonadaptive temporal patte
j(xi), to yield the total average local field,

h̄~xi ,t !5he~xi ,t !1j~xi !. ~2.5!

The weights are indexed by the arrive time of the presyna
spike. Thus,w(xi ,t) represents the weight that received
presynaptic spike at timexi during cyclet, and the effect of
that spike on the postsynaptic spike probability is rep
sented by response function,e(xi).
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B. Slow synaptic dynamics

We will now formalize the temporal learning rule in term
of changes in the synaptic strengths~synaptic weights!,
w(xi ,t), over timet. Let si be the state of the input site tha
begins at timexi . Let L(xj2xi) be proportional to the
change of the synaptic strength with input states(xi)51 a
postsynaptic spike atxj . We restrict the domain of the asso
ciative rule to thex-component of our model~the fast time
scale!. Whenever possible, we will normalize the learni
function such that( iL(xi)51, and scale with a learning rat
constant,l.

Suppose that ast progresses the model neuron’s spi
output converges to a fixed point of the spike probabi
function denoted by f̂ (xi). The average change in th
weights during each cycle will be dependent on the devia
of the spike probability function fromf̂ (xi). This ensemble
average change of the weights is then formalized by ave
ing the deviation from the final state over the learning ru

^Dw~xi ,t !&5l(
j

L~xj2xi !„ f̂ ~xj !2^nout~xj ,t !&…,

~2.6!

where the sum is over the nonvanishing extent ofL(xi), and
Dw(xi ,t)5w(xi ,t)2w(xi ,t21). The right hand side o
this equation contains the information about the correlat
between the pre- and postsynaptic spikes. However, th
implicit because our labeling of the weights. The input sp
train at the synapsew(xi ,t) is ni

in(xj ,t)5d i j so that the
input spike always occurs at the same time during the p
sentation of the nonadaptive temporal pattern.

Since the first term of Eq.~2.6! is independent of the stat
of the ~postsynaptic! model neuron, it represents a nonass
ciative term. An important case is when the fixed point of t
spike probability function is constant,f̂ (xi)5 f̂ . Then the av-
erage change in weights becomes

^Dw~xi ,t !&5l f̂ 2l(
j

L~xj2xi !^n
out~xj ,t !&. ~2.7!

This learning rule causes the system to approach an equ
rium of synaptic strengths that generates a negative imag
the nonadaptive pattern,j(xi). The negative image is
sculpted from the series of delayed inputs,he(xi), if certain
constraints are imposed on the functional form ofL(xi). We
will investigate these constraints in the next two sectio
Equation~2.7! is a special case of the learning rule studied
@6#. In the following we analyze the dynamics when the inp
spikes through the adaptive input are repeatedly correlate
time with a nonadaptive input.

Another important class of temporal learning rules is
case where associative enhancement and depression co
nents cancel such that( iL(xi)50. In this case, the averag
synaptic change simply becomes

^Dw~xi ,t !&52l(
j

L~xj2xi !^n
out~xj ,t !&. ~2.8!

This learning rule cannot drive the system to a fixed po
probability function that is constant inxi .
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We shall first explore a simple example of the dynam
associated with Eq.~2.6!. Let L(xj2xi)5d j i , the limiting
case of a ‘‘temporal’’ learning rule where the synap
change responds to postsynaptic activity at only one poin
time. This equivalent to the learning rule used in Hopfie
networks, except that here the synapses are history de
dent making this a ‘‘spiking’’ model as opposed to a ‘‘rate
model. The average weight change is then

^Dw~xi ,t !&5l„ f̂ ~xi !2^nout~xj ,t !&…. ~2.9!

Let h̄eq(xi) be the local field associated with the fixed poi
of the spike probability function, such thatf̂ (xi)
5 f „h̄eq(xi)…. Expand^nout(xj ,t)& about the deviation of the
local field from the fixed point field,h̄(xi ,t)5h̄eq(xi), in the
expression for the average synaptic change, Eq.~2.6!. The
lowest order term of the expansion yields

^Dw~xi ,t !&52lY~xi !„h̄~xi ,t !2h̄eq~xi !…1•••,
~2.10!

whereY(xi)5b f̂ (xi)„12 f̂ (xi)…. Defining a set of weights

$ŵ(xi)%, such that the fixed point local field,

h̄eq~xi !5(
j 51

N

ŵ~xj !e~xi2xj !1j~xi !, ~2.11!

we have the expression for the average change in syna
strengths,

^Dw~xi ,t !&52lY~xi !(
j 51

N

„^w~xj ,t !&2ŵ~xj !…e~xi2xj !.

~2.12!

C. Stability analysis

The change of an individual weight in Eq.~2.12! depends
on the strength of synapse that are in turn determined
other weights in the series of adaptive inputs. Thus, the n
locality of the response function in thex component leads to
instabilities that will drive the system away from the fixe
point of the spike probability function. To investigate th
conditions under which the instabilities arise, we substit
into Eq.~2.12! an oscillatory solution for the weight configu
ration in thex component. Thet component is given an ex
ponential decay parametrized by the constantt. Stability will
result if the decay constant is positive. The solution to
tested is

^w~xi ,t !&5ŵ~xi !1eikxie2t/t, ~2.13!

wherek is the wave number of instabilities that deviate fro
the fixed point of the weight configuration.

The computation is simplified if we approximate the sum
with integrals, take the limitDx→0, and Dw→(d/dt)w.
The problem now becomes a one-dimensional field theor
x that is evolving in time,t. Substituting Eq.~2.13! into this
approximation of Eq.~2.12! yields

1

t
5lY~x!E e~y2x!eik(y2x)dy. ~2.14!
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4080 PRE 62PATRICK D. ROBERTS
We will represent the response function by the so-ca
a-function with a variable decay constant:e(x)5E2e2Ex for
x>0, otherwisee(x)50 ~shown in Fig. 1!. The normaliza-
tion is chosen so that*e(x)51. Using this functional form
for the synaptic response function, Eq.~2.14! becomes

1

t
5lY~x!E2

~E22k2!1 i2kE

~E21k2!2
. ~2.15!

The system will spontaneously oscillate with a frequency
1/k if the real part of 1/t is negative. SinceY(x) is always
greater than zero, 1/t is negative for values ofk that are
greater thanE. Thus, the evolution of the weight configura
tion is unstable except in the limit ofE→`, i.e., e(x)
5d(x), the Dirac delta function. In addition, the comple
term in Eq. ~2.14! implies the existence of traveling wav
solutions in the weight configuration so that the system ne
settles to a constant configuration.

This example is instructive for two reasons. First, it ca
tures all of the dynamics that appear with temporal learn
rules: a stable approach to the fixed point of the spike pr
ability function in the limit, E→`, and instabilities for all
finite values ofE. Second, it shows that instabilities develo
if the temporal learning rule is not extended in time. T
learning rules of the next two sections will generalize t
case to study the dynamics when the rate of synaptic cha
is dependent on the activity at different times.

III. SQUARE RESPONSE FUNCTION

We now investigate the case in which both the learn
rule and response functions are square waves. This case
show the effect of the learning rule’s temporal dependen
This form of learning rule exhibits the universality class
containing the dynamics generated by the all temporal le
ing rules such as the biologically realistica-function that
will be treated in the next section. Let

e~x!5H 1/E if xE<x<xE1E,

0 otherwise,
~3.1!

wherexE is a real number that denotes the onset of the
teraction~spike arrival!, andE denotes the extent of the in
teraction ~postsynaptic response to the spike! in time ~see
Fig. 1!. This definition is constructed so that the area un
e(x) is unity. The learning function,L(x), is defined simi-
larly with E replaced byL. To simplify the calculation, we
will choose the fixed point of the spike probability functio
to be a constant,f̂ (x)5 f̂ . This choice of the fixed point doe
not detract from the generality of the results because we
primarily interested in instabilities of the equation of syna
tic change that are dependent on the associative term.

A. Stability: Temporal pattern inverse

Proceeding as in the previous section, we now write
~2.10! as

^Dw~xi ,t !&52lY(
j

L~xj2xi !„h̄~xj ,t !2h̄eq~xj !…,

~3.2!
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whereY is defined following Eq.~2.10!. After substituting in
the solution given in Eq.~2.13!, and using the continuum
approximation, we change variables to arrive at

1

t
5lYE E L~y2z!e~y!e2 ikzdydz. ~3.3!

As before, the integrals are over the nonvanishing segm
of L(y2z) ande(y). Carrying out the integration yields

1

t
5lY

4

k2EL
sinS kE

2 D sinS kL

2 Deik(XE2XL1L/22E/2).

~3.4!

The real part of this expression is positive for allk only if
E5L andXE5XL .

Thus, stability of the temporal learning rule is assur
only when there is an exact match between the learning fu
tion and the response function. Under these conditions,
synaptic strengths relax until their inputs exactly cancel
nonadaptive temporal pattern. When the learning parame
are changed, a Hopf bifurcation is crossed and oscillati
appear.

B. Instabilities: Oscillations and traveling waves

We may generalize our representation of the associa
component of the learning rule by separating the learn
function into a segment that reduces the weights,L2(x)>0
for all x, and a segment that increases the weights,L1(x)
>0 for all x. The average change in weights now becom

^Dw~xi ,t !&5l f̂ 2l1(
j

L1~x2xi !^n
out~xj ,t !&

2l2(
j

L2~x2xi !^n
out~xj ,t !&, ~3.5!

where L6(x)571/L6 for X6<x<X61L6. Without loss
of generality, we may scale thex-component such thatE
51, and set the beginning of each synaptic response so
XE50. When we carry out the same calculation as abo
we find that the real part of the decay constant is

Re~t!5
4

Yk2 Fl2

L2
cosS k

2
~2X21L221! D sinS k

2
L2D

2
l1

L1
cosS k

2
~2X11L121! D sinS k

2
L1D GsinS k

2D .

~3.6!

The stable approach to equilibrium of the synaptic streng
under the influence of the learning rule requires that t
expression is positive for allk.

Two important categories of learning rules depend on
region of the learning rule that is coincident with the inte
action. Hebbian learning is defined as a positive syna
change during the interaction, and anti-Hebbian learning
defined as a negative synaptic change. In the first case
associative increase of the synaptic strength is coincid
with the response function so thatL151 andX150. Sub-
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PRE 62 4081DYNAMICS OF TEMPORAL LEARNING RULES
stituting these values into Eq.~3.6! we find that Re(t),0 for
some value ofk regardless of our choice of the remainin
parameters. Thus, Hebbian learning causes perturba
from the fixed point to grow with time so that nonadapti
temporal patterns are magnified by the adaptive inputs.

The case of anti-Hebbian learning is more stable, as
be seen when we setL251 andX250. It is possible for
Re(t)>0 for all k if l2.l1 for a wide range of values o
L1 andX1 . In fact, if L151, then

Re~t!5
4

Yk2
@l22l1 cos~kX1!#sin2S k

2D . ~3.7!

This implies stability regardless of the time delay betwe
the beginning of the synaptic response and the onset of
weight increase in the learning function. Due to the stro
stability that results from anti-Hebbian learning, when
tempting to store a target temporal pattern it is perhaps be
to base learning algorithm on anti-Hebbian learning rat
than the traditional implementations of the Hebbian rule@3#.
However, the anti-Hebbian system will not ‘‘complete’’ a
input pattern, but the stored pattern is recovered throug
reversal of the output when there is no input pattern.

The types of the instabilities reflected by the average lo
field, h̄(x,t), are shown in Fig. 2. This figure was generat
by a computer simulation of the model’s dynamics. At t
beginning of the simulation, a nonadaptive input,j(x), is
delivered for the time steps, 45,xn,105, shown by the
solid line. When there is an exact match between the
sponse function and learning function@e(x)5L(x) for all
x], and the nonassociative learning rate,l f̂ .0, then the
adaptive input weights adjust to cancel the nonadaptive in
pattern,j(x). The result is trace~A! in the figure. However,

FIG. 2. Instabilities.The average local field as generated by fo
different temporal learning rules in a simulation. In all cases,L2

5L15Es , and the nonadaptive input~solid line! was introduced at

t50. ~A! Only associative enhancement (l150), l f̂ .0, X250,
and t5200. ~B! Same as~A! with X152Es/2, andt51000. ~C!

l f̂ 50, l15l2.0, X150, X25Es , andt520. ~D! Same as~C!
with X252Es and t520.
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when the learning rule is symmetric about the origin, th
the oscillations shown by trace~B! develop. The left- and
right-moving traveling waves~C and D! are generated by
learning rules wherel25l1 andl f̂ .0. Since these are th
only instabilities that arise in one-dimensional systems,
have a full classification of the dynamics generated by te
poral learning rules.

IV. BIOLOGICAL RESPONSE FUNCTION

In this section we will investigate the dynamics that res
when the learning rule is represented bya functions. This
functional dependence of the learning rule is consistent w
the known biological mechanisms thought to be respons
for long term changes in synaptic strength@18#. Let e(x) be
defined as in Sec. II, and defineL(x) also as ana functions
with the parameterL replacingE. Using these functions in
the dynamical equation of synaptic change, Eq.~3.3! be-
comes

1

t
5lYE2L2E

0

y

dzE
0

`

dyy~y2z!e2L(y2z)e2Eyeikz.

~4.1!

The integrals can be evaluated to yield

1

t
5lY

E2L2

~ ik1L !2 F2
2~ ik1L !

~L1E!3
1

1

~ ik2E!2
2

1

~L1E!2G .

~4.2!

The conditions for stable solutions can be made more ap
ent by rescaling thex component in units ofE51. After
some algebra, one finds that the real part of 1/t is negative if,
for some choice ofk,

0.~12L !k61~32L12L222L3!k42~223L13L21L3

1L42L5!k21~L1L21L4!. ~4.3!

This condition is satisfied, and thus the rule is unstab
for all L.E. If L<E, a narrow band of values exist wher
there are no solutions for the wave number such that
~4.3! is negative~shown in Fig. 3!. Thus, thea-function is
slightly more forgiving than the square response functi
The other results from the analysis for the square respo
function still hold, but with the caveat that there is mo
tolerance for parameter deviations from an exact match
tween the response function,e(x), and the learning function
L(x), to insure stability.

V. DISCUSSION

The primary goal of this project is to understand how t
dynamics of biological neural networks complicate know
dynamics of adaptive neural networks. We have shown
given a series of delayed inputs, temporal learning rules l
to one of four dynamical types:~1! stable approach to an
equilibrium activity pattern;~2! oscillatory instabilities with
a frequency determined by learning rule parameters;~3! trav-
eling waves propagating in the1x direction; ~4! traveling
waves propagating in the2x direction. As long as the time
scale is such that the duration of the synaptic response is

r
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negligible, instabilities arise if enhancement of the synap
is associated with the postsynaptic response. Thus, the
no Hebbian learning in the traditional sense, only an
Hebbian~activity pattern 1! and differential Hebbian learn
ing ~activity patterns 2 and 3!.

The neural architecture investigated here is far simp
than that found in most neural networks~biological and ar-
tificial!. Two important elements that are certain to have
important influence on the dynamics resulting from partic
lar learning rules are recurrent connections and inhibiti
This study must therefore be considered as a first-o
analysis of the dynamics of temporal learning rules in b
logical systems. However, the simplification presented h
preserves what are expected to be the major componen
the dynamics, even if modified by recurrent connections
inhibition.

The first of these solutions has been observed in the e
trosensory system of mormyrid electric fish, and there is r

FIG. 3. Range of stability for learning rules based on thea
function.The shaded regions are solutions fork where 1/t,0. Sta-
bility occurs only for values ofL where the ratioE/L is between 0.4
and 1.
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son to believe that the same principle underlies sensory
cessing in several other systems@19#, such as the mammalia
auditory system and the cerebellum@20#. Instabilities would
disrupt the sensory images in these systems@14#. Thus, the
fact that there is a region of stability in Fig. 3 is advant
geous for these systems because a precise match betwee
associative depression of the learning rule and the resp
function is not required for a stable final image.

However, instabilities can have an important function
some biological systems. Learning rules leading to the tr
eling wave solution in the2x direction have also been ob
served, and may serve an important function because
arrangement would help the brain to associate events tha
separate in time. If a sensory input to a neuron is distribu
in time through a series on adaptable synapses, and a
input is paired with the initial stimulus, then the activit
initiated by the later input will propagate to the beginning
the distributed input. Thus the traveling wave solution acts
link the two events in time@7#. That this type of learning rule
is found in cortical brain structures that are important in t
association of different events is suggestive. One can ex
that the form of the temporal learning rule plays a critic
role in determining the function of each biological neur
network.

Generalizations of the methods presented here will be
interest to other fields besides neuroscience. The recen
terest in disordered systems out of equilibrium provide
rich background for the separation of the time scales i
different variables. It would be interesting to compute va
ables such as energy and state correlations in larger netw
with the learning rules and interactions studied here. T
results of such a computation may provide insight into
aging of quenched materials under externally applied str
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